# ARTICULOS SOBRE TECNICAS/ PAPERS ON TECHNIQUES

# TECNICA BIMO. EFECTO F DE ESTERILIZACION BASADO EN EL MICROORGANISMO IMAGINARIO SEGUN EL METODO DE LA CONCEPCION B.

Luis F.de la Cruz<sup>1</sup>, Justo Pérez<sup>2</sup>.

<sup>1</sup>Centro de Biomateriales, Universidad de La Habana; Ave. Universidad e/G y Ronda, Plaza de la Revolución; Ciudad de La Habana. C.P. 10400, Cuba <sup>2</sup>Facultad de Biología, Departamento de Microbiología, Universidad de La Habana, Cuba.

Recibido en diciembre de 1993. Aprobado en octubre de 1994.

Key words: Sterilization, F-effect, B-conception, microorganism, disinfection, Arrhenius.

#### **SUMMARY**

Biotechnological industries, food and medico-biological ones in specific, urge for effective-enough sterilization processes. They rapidly put into use the F-effect physical method in production control. In this way, process control is simplified, compound thermolability is considered and product quality is increased.

The important Imaginary MicroOrganism (IMO) concept (Van Asten and Dorpema, 1982) is based on Z-values and Ball's general method. Nevertheless, Z-values are temperature dependent. This is the reason why inexact results are to be obtained in calculations and extrapolation is limited. Thereby, process improvement and/or intensification is also affected.

In the present work, specific temperature intervals of high risk and poor IMO-concept effectiveness on using Z-values are derived; a new B-Imaginary MicroOrganism (BIMO) concept according to thermosensivity B-coefficient based on Arrhenius equation is therefore developed (B= 9 500 K; D<sub>121,1°C</sub>= 2,00 min.). Process control confidentiability, up to high temperature extrapolation and improvement possibility are achieved.

This BIMO technique guarantees simplicity in process control, whatever the scale is, without need of microbiological presterilization count if required.

#### RESUMEN

Las industrias biotecnológicas, esencialmente las alimentarias y las médico-biológicas, exigen procesos de esterilización suficientemente eficaces. Las mismas asimilan aceleradamente el método físico del efecto F para el control de las producciones. De esta forma se simplifica el control, se considera la termolabilidad de componentes y se facilita la elevación de la calidad.

El importante concepto del MicroOrganismo Imaginario (IMO) (Van Asten y Dorpema, 1982) se sustenta en valores Z yel método general de Ball. No obstante, los valores Z son dependientes de la temperatura, por lo que se introducen inexactitudes en los cálculos, y se limitan la extrapolación, el perfeccionamiento y/o intensificación de los procesos.

El presente trabajo define los intervalos específicos de temperatura con alto riesgo, la poca eficacia del IMO al usar los valores Z y desarrolla el concepto del MicroOrganismo Imaginario BIMO según el coeficiente B de termosensibilidad basado en la ecuación de Arrhenius (B= 9 500 K; D<sub>121,1°C</sub>= 2,00 min). Se mejora la confiabilidad del control, la extrapolación hasta altas temperaturas y la posibilidad del perfeccionamiento de procesos. De esta forma se presenta una técnica perfeccionada (BIMO) que garantiza sencillez y seguridad en el control a cualquier escala, sin necesidad de predeterminaciones microbiológicas iniciales en los casos que así lo requieran.

#### INTRODUCCION

Los procesos de esterilización térmica se aplicaron inicialmente a sistemas biológicos alimentarios. Los sistemas biológicos se han dividido últimamente en muy ácidos (pH<=4,2) y poco ácidos (4,2< pH<=7). Se destaca el campo de los sistemas húmedos poco ácidos (SHPA) en la esterilización biológica.

Para su cálculo o control se desarrollaron desde las primeras décadas de este siglo los métodos generales de Ball. La industria alimentaria evalúa los microorganismos mediante el valor Z de termorresistencia, asumió al *Bac*. Stearothermophilus como el más adecuado entre los termorresistentes y se desarrolló la teoría del efecto F (Deindoerfer, 1957; Stumbo, 1973; Tánchev, 1981).

La industria médico-farmacéutica ha adoptado igual microorganismo, añadiendo un extenso sobretratamiento en sus procesos e incorporó la teoría del F<sub>0</sub> para resolver el problema del control de la esterilización, perfeccionarlo y garantizar adecuado nivel de seguridad en los SHPA no alimentarios. Su

asimilación acelerada ha sido inducida poderosamente por la obligada necesidad de disminuir la destrucción térmica de preparados parenterales termolábiles, así como disminuir los productos de su degradación, que en múltiples casos provocan reacciones adversas al organismo humano.

La esterilización farmacéutica es definida desde 1980 como el tratamiento de un material contaminado, de tal modo que: de un millón de artículos sólo quede contaminado un artículo después de la esterilización (Van Asten y Dorpema, 1982). Esto coincide con las definiciones desarrolladas desde hace tiempo para la industria alimentaria (Stumbo, 1973; Tánchey, 1981).

Independientemente, la práctica ha confirmado como válidos los tratamientos: 20 min a t= 120°C y 3 min a t= 134°C, los que originalmente en parte basados en el Bac. Stearothermophilus, no corresponden a ningún microorganismo real. Los tratamientos prácticos mencionados determinan un valor Z y se establece la teoría del microorganismo imaginario para la esterilización (IMO). El concepto del IMO (Van Asten y Dorpema, 1982) aplica los métodos de Ball del efecto F en los SHPA aceptando un microorganismo inexistente (D<sub>120</sub>= 3,33 min; Z= 17 K) como referencia.

La teoría del efecto F exige conocer la carga inicial N<sub>0</sub> de microorganismos presentes. Los tratamientos prácticos ampliamente aceptados no requieren de dicha determinación previa y posibilitan determinado nivel de seguridad y el paso del monitoreo microbiológico al control termofísico de los procesos. Por ello, el concepto IMO en principio, resultaría versátil, práctico y perspectivo.

No obstante, los valores Z constituyen un riesgo importante para el cálculo del efecto F, por cuanto son dependientes de la temperatura (Aiba *et al.*,1973, Thijssen *et al.*, 1976; Lenz y Lund, 1977; Wang *et al.*, 1979; Matvéjev, 1981; Tánchev, 1981) y no garantizan seguridad en la extrapolación, ni en el perfeccionamiento de procesos SHPA biotecnológicos.

Para el perfeccionamiento del cálculo del efecto F de esterilizazción se propuso el método de la Concepción B (De la Cruz et al, 1987a; De la Cruz, 1994). Al introducir la teoría del microorganismo imaginario BIMO basada en la concepción B para la esterilización se eliminan las dificultades manifestadas.

La variabilidad de Z puede determinar un déficit letal, equivalente a una gran parte del sobrediseño de hasta 50-100% adicional eventualmente empleado. Por ello, la teoría del concepto BIMO incluye además, la posibilidad de disminuir el sobrediseño, de lo cual

puede resultar una mejora adicional de la calidad, determinado ahorro energético y un aumento de la productividad del trabajo.

El objetivo del presente trabajo consiste en desarrollar y generalizar a todos los SHPA el concepto IMO sobre la base del método de la Concepción B. La nueva técnica BIMO resultante aumenta la estabilidad, la confiabilidad y seguridad tecnológicas y simplifica su aplicación, manteniendo todas las ventajas restantes.

#### MATERIALES Y METODOS

#### Fundamentos del método

La teoría de la Concepción B (De la Cruz et al, 1987a; De la Cruz, 1994) se basa en la ecuación de Arrhenius.

$$k = A.\exp[-E_a/(RT)], \quad (1)$$

donde: k-constante de velocidad de inactivación, min<sup>-1</sup>; A-factor de frecuencia, min<sup>-1</sup>; E<sub>a</sub>-energía de activación, J/mole; R-constante universal de los gases, J/(mole.K) y T-temperatura absoluta, K.

Es conocido que:  $\tau$ = n.D; D= 2,303/k (2)

donde n-grado de esterilización (número de órdenes logaritmicos disminuidos en la cantidad de microorganismos viables); D= D<sub>T</sub>-tiempo para la disminución de la población viable del microorganismo de referencia en un ciclo logarítmico, min; τ- tiempo de muerte térmica, min; (Stumbo, 1973; Tánchev, 1981). Sustituyendo(1) en (2), transformando y agrupando

$$\log \tau = \log A_0 + BT^{-1}$$
, (3)

donde  $A_0$ -constante característica, min; B-coeficiente de termosensibilidad, K. Para cualesquiera temperaturas  $T_b > T_a$ 

$$\tau_b = \tau_a \operatorname{alog}[B(T_b^{-1} - T_a^{-1})],$$
 (4)  
donde el operador:  $\operatorname{alog}[f(x)] = 10^{f(x)}.$  (5)

De(4): B= 
$$\log(\tau_b/\tau_a)/(T_b^{-1}-T_a^{-1})$$
. (6)

Además, para  $T_r$ , T -constante, entonces  $F_0 = \tau_r$  y  $F = \tau$ 

$$F_0 = \tau \operatorname{alog}[B(T_r^{-1} - T^{-1})] = F.K_B$$
 (7)  
 $F = F_0 K_B^{-1}$ , (8)

donde  $K_B$ = alog[B( $T_r^{-1}$ - $T^{-1}$ )]-nuevo coeficiente de velocidad letal,  $T_r$ -temperatura absoluta de referencia (patrón), K;  $\tau_r$ -tiempo de muerte térmica a la temperatura  $T_r$  de referencia, min. Al determinar los parámetros de BIMO se emplean los siguientes datos aceptados para el microorganismo imaginario: A-coeficiente de termorresistencia, Z = 17 K; B- grado de inactivación, n = 6 (SHPA no alimentario); C-tiempo requerido  $\tau_a = 20$  min a temperatura  $t = 120^{\circ}$ C; D-tiempo requerido  $\tau_b = 3$  min a temperatura  $t = 134^{\circ}$ C; E-coeficiente  $t = 120^{\circ}$ C; D-tiempo requerido  $t = 120^{\circ}$ C; D-tiempo requerido t =

Los intervalos o rangos de riesgo cuando se trabaja con el IMO, se determinan por las temperaturas isovalentes según el método de diferencias relativas  $\delta K_B$  y por la temperatura crítica para  $\delta K_{Bmin}$  (De la Cruz *et al.*, 1987b) de la siguiente manera. Sean las raíces

$$t_1 = \frac{ZB}{273.15 + t_r} - 273.15; t_2 = t_r$$
 (10)

donde  $t_r$ -temperatura de referencia, °C;  $t_1,t_2$ - temperaturas isovalentes, °C; y  $t_{Cr.} = \sqrt{ZB} - 273.15$  (11) donde  $t_{Cr.}$ -temperatura crítica a la cual  $\delta K_B$  es mínima, °C. El rango de sobreesterilización será  $[t_1, t_2]$  si  $t_{Cr.}$  se encuentra dentro del mismo. Los intervalos abiertos externos constituirán rangos de subesterilización o riesgo. Esto lo demostraremos de la siguiente forma.

#### Desarrollo del método

# Propiedad del punto mínimo

Sea t<sub>Cr</sub> la temperatura crítica de la función diferencia relativa

$$\delta K_B = (K_F - K_B).100/K_B,(12)$$

para la cual existe el punto mínimo  $\delta K_B$  min. Si existen las temperaturas isovalentes  $t_1 \neq t_2$ , entonces la temperatura crítica pertenece al intervalo  $[t_1, t_2]$ .

#### Demostración

Sea de (11): 
$$T_{Cr} = + (ZB)^{1/2} > 0$$
, (13)

única y positiva por no existir temperatura termodinámica absoluta negativa. Además, sea de(10):  $T_1 = ZB/T_r$ ;  $T_2 = T_r$  (14) sustituyendo (14) en (13), (15) y ordenando

$$T_{Cr} = (T_1.T_2)^{1/2}$$
, (15)

donde la temperatura crítica es media geométrica de las temperaturas isovalentes, por lo que es única y se encuentra en el intervalo  $[t_1,t_2]$ . Este es por tanto un intervalo de sobreesterilización.

# Propiedad del mínimo funcional único (δκ<sub>bmin</sub>)

Si existe la función  $\delta K_B$  (ec.(12)), ésta es unimodal y posee su único mínimo a 1 : emperatura crítica, el cuál es su punto mínimo.

#### Demostración

Derivando la función  $K_B$  sucesivamente respecto a la temperatura t, la segunda derivada es

$$d^{2}(\delta K_{B})/dt^{2} = 100K_{0}[(Z^{-1}-BT^{-2})^{2} + 2BT^{-3}]$$
 (16)

$$d^{2}(\delta K_{Bmin})/dt^{2} = 200 K_{0} (BT_{Cr}^{-3}) > 0$$
 (17),

donde  $K_0 = K_F . K_B^{-1}$  y  $B \ge 0$  por definición. Por tanto existe mínimo único en el punto mínimo a  $t_{Cr}$  en el intervalo  $[t_1, t_2]$ .

# Propiedad de la existencia de los rangos de riesgo

Si existe la función  $\delta K_B$ , t y las temperaturas isovalentes son  $t_1 \neq t_2$  y  $t_1 \leq t_2$ , existen dos intervalos de subesterilización  $t \leq t_1$  y  $t \geq t_2$ , ó rangos de riesgo.

#### Demostración

Puesto que existen  $t_{1\neq}$   $t_2$ , el conjunto innumerable de las temperaturas absolutas  $T = \{T: T \in IR; T > 0\}$  se divide en tres intervalos. Por la propiedad del mínimo funcional único la función presenta un sólo mínimo  $\delta K_{Bmin}$  en el intervalo  $[t_1, t_2]$ . De (12)

$$\delta K_B = (K_F/K_B-1).100$$
 (18)

puesto que: 
$$\lg(K_F/K_B) = (T - T_r)[Z^{-1} - B(TT_r)^{-1}],$$
 (19)

$$\lg(K_F/K_B) = (T-T_r)[(1-T_1/T)/Z],$$
 (20)

sustituyendo (13), (15) y (19), desarrollando y simplificando

$$\lg(K_F/K_B) = -(T_r - T_{Cr})^2/(T_r Z) \le 0$$
 (21)

por lo que 
$$K_F/K_B \le 1$$
 y  $\delta K_{Bmin} \le 0$  (22)

Además, si T  $\leq$  T  $_{Cr} \leq$  T  $_{r}$  = T  $_{2}$ , entonces T-T  $_{r} \leq$  0; (1-T  $_{1}/T) \leq$  0 y lg(K  $_{F}/K _{B}) \geq$  0, por lo que  $\delta K _{B} \geq$  0 (23)

Si T> 
$$T_2$$
=  $T_r$ >  $T_{Cr}$ >  $T_1$ , entonces  $T$ - $T_r$ > 0;  $(1$ - $T_1/T)$ > 0 y  $lg(K_F/K_B)$ > 0, por lo que  $\delta K_B$ > 0. (24)

En consecuencia, existen dos intervalos  $t \le t_1$  y  $t \ge t_2$  de subesterilización. En ellos, los coeficientes  $K_F$  resultan mayores que los coeficientes  $K_B$  más exactos (De la Cruz et al, 1987b). Estos dos intervalos se definen como rangos de riesgo.

#### Criterio de hiperriesgo

Una de las temperaturas isovalentes es función directa de Z y B (ec.(10)). Si Z es grande provoca la ocurrencia de la temperatura  $t_1 \ge t_r$ . Este fenómeno lo denominamos Hiperrangos de riesgo. Las temperaturas isovalentes no son

inferiores a  $t_r: T_1 \ge T_2 = T_r; T_1/T_2 \ge 1$ . En correspondencia con (14) introducimos una variable real H de holgura, la cual denominamos Criterio H de Hiperrango. Existe Hiperrangos cuando

$$H = [(ZB/T_r^2)-1] \ge 0.$$
 (25)

Sea  $T_M$ -temperatura de retención o la máxima del proceso de esterilización. La ocurrencia de subesterilización para todas las temperaturas del proceso hasta  $T_M$  la definimos como Hiperriesgo. En tal caso se cumple:  $T_1/T_M \ge 1$  y  $T_2/T_M \ge 1$ . Si se consideran las variables  $H_1$  y  $H_2$  de holgura y se relacionan,

$$H_1/H_2 = (T_1-T_M)/(\Gamma_2-T_M) \ge 1$$
,  $\forall H \ge 0$  y  $T_2 > T_M$  (26)

Definamos un Indice R= H/|H| = {1,-1}de Hiperrangos y un Criterio H<sub>R</sub> de Hiperriesgo. Existe Hiperriesgo, siempre que se cumpla

$$H_R = \{ [1 + H/(1-T_M.T_r^{-1})]^R - 1 \} \ge 0$$
 (27)

Evidentemente,  $\forall H=0$ ,  $T_1=T_2$ ;  $R=\pm 1$ , por lo cual existe Hiperriesgo, ya que  $H_R=0$ . (28)

# RESULTADOS Y DISCUSION

#### 1. Resultados obtenidos

En la tabla 1 se dan los datos del BIMO obtenidos mediante el método de la Concepción B y los datos de τ aceptados para el microorganismo imaginario según Van Asten *et al.* Los valores de D se obtienen de la siguiente ecuación (Stumbo, 1973; Tánchev, 1981; Flaumenbaum, 1981), que corregida para la práctica de diseño de procesos produce:

$$\tau = \text{f.n.D} = F_T^B = \text{f.D.}(\log N_0 + 6), \quad (29)$$

donde f > 1-factor de seguridad o sobrediseño;  $F_T^B$  -efecto letal necesario (calculado), min. La temperatura de referencia se toma para los cálculos igual a  $t_r = 121,1^{\circ}C$  de acuerdo con la práctica internacionalmente generalizada.

|         |       | BIMO  | BIMO: f= 1,3 |       |       |       |  |  |  |
|---------|-------|-------|--------------|-------|-------|-------|--|--|--|
| t,°C    | 120   | 121,1 | 120          | 121,1 | 121,1 | 121,1 |  |  |  |
| n       | 5     | 5     | 6            | 6     | 6     | 5     |  |  |  |
| τ, min  | 20    | 17,2  | 20           | 17,2  | 15,6  | 13,0  |  |  |  |
| D,min   | 2,8   | 2,4   | 2,33         | 2,0   | 2,0   | 2,0   |  |  |  |
| в,к     | 9 500 |       |              |       |       |       |  |  |  |
| Н       |       | 0,04  |              |       |       |       |  |  |  |
| R       |       | 1,00  |              |       |       |       |  |  |  |
| t2,°C   |       | 121,1 |              |       |       |       |  |  |  |
| tı,°C   |       | 136,5 |              |       |       |       |  |  |  |
| HR      |       | ∞     |              |       |       |       |  |  |  |
| ter.,°C |       | 128,7 |              |       |       |       |  |  |  |

Tabla 2 Valores de  $K_B$  para el BIMO en dependencia de los valores t,  $^{o}C$  de temperatura.  $B=9\,500\,$  K,  $t_r=121,1$   $^{o}C$ .

| t,°C | $K_{B}$          | t,°C         | $K_{B}$          | t,°C                        | $K_B$            | t,°C                | $K_{B}$            |
|------|------------------|--------------|------------------|-----------------------------|------------------|---------------------|--------------------|
| 70   | 0.0003           | 90           | 0.0086           | 110                         | 0.2004           | 130                 | 3.4038             |
|      | 0.0003           | 90.5         | 0.0094           | 110.5                       | 0.2159           |                     | 3.6404             |
| 71   | 0.0003           | 91           | 0.0102           | 111                         | 0.2325           | 131                 | 3.8928             |
| 71.5 | 0.0003           | 91.5         | 0.0111           | 111.5                       | 0.2504           |                     | 4.1621             |
| 72   | 0.0004           | 92           | 0.0120           |                             | 0.2696           |                     | 4.4492             |
| 72.5 | 0.0004           | 92.5         | 0.0130           |                             | 0.2902           | 132.5               | 4.7554             |
| 73   | 0.0004           | 93           | 0.0141           | 113                         | 0.3123           | 133                 | 5.0818             |
| 73.5 | 0.0005           | 93.5         | 0.0153           | 113.5                       | 0.3360           | 133.5               | 5.4297             |
| 74   | 0.0005           | 94           | 0.0166           | 114                         | 0.3615           | 134                 | 5.8005             |
| 74.5 | 0.0006           | 94.5         | 0.0181           | 114.5                       | 0.3888           | 134.5               | 6.1956             |
| 75   | 0.0006           | 95           | 0.0196           | 115                         | 0.4181           | 135                 | 6.6166             |
| 75.5 | 0.0007           | 95.5         | 0.0212           | 115.5                       | 0.4496           | 135.5               | 7.0650             |
| 76   | 0.0008           | 96           | 0.0230           | 116                         | 0.4833           | 136                 | 7.5426             |
| 76.5 | 0.0008           | 96.5         | 0.0249           | 116.5                       | 0.5194           | 136.5               | 8.0512             |
| 77   | 0.0009           | 97           | 0.0270           | 117                         | 0.5582           | 137                 | 8.5928             |
| 77.5 | 0.0010           | 97.5         | 0.0292           | 117.5                       | 0.5997           | 137.5               | 9.1693             |
| 78   | 0.0011           | 98           | 0.0316           | 118                         | 0.6442           | 138                 | 9.7829             |
| 78.5 | 0.0012           | 98.5         | 0.0343           |                             | 0.6919           |                     | 10.4360            |
| 79   | 0.0013           | 99           | 0.0371           | 119                         | 0.7430           |                     | 11.1309            |
| 79.5 | 0.0014           | 99.5         | 0.0401           | 119.5                       | 0.7976           |                     | 11.8703            |
| 80   | 0.0016           | 100          | 0.0434           | 120                         | 0.8562           | 140                 | 12.6568            |
| 80.5 | 0.0017           | 100.5        | 0.0469           | 120.5                       | 0.9189           |                     | 13.4933            |
| 81   | 0.0019           | 101          | 0.0508           | 121                         | 0.9860           |                     | 14.3828            |
| 81.5 | 0.0020           | 101.5        | 0.0549           | 121.5                       | 1.0578           |                     | 15.3287            |
| 82   | 0.0022           | 102          | 0.0593           | 122                         | 1.1347           | 142                 | 16.3342            |
| 82.5 | 0.0024<br>0.0026 | 102.5        | 0.0641           | 122.5                       | 1.2169           |                     | 17.4031            |
| 83.5 | 0.0026           | 103<br>103.5 | 0.0693           | 123                         | 1.3049           | 143                 | 18.5390            |
| 84   | 0.0029           | 103.5        | 0.0748           | 123.5                       | 1.3989           | 143.5               | 19.7461            |
| 84.5 | 0.0031           | 104.5        | 0.0808           | 124                         | 1.4995           | 144                 | 21.0287            |
|      | 0.0034           |              | 0.0873           | 124.5                       | 1.6071           | 144.5               | 22.3911            |
|      | 0.0037           |              | 0.0942           |                             | 1.7220           |                     | 23.8383            |
|      | 0.0041           | 105.5        | 0.1017           |                             | 1.8448           |                     | 25.3751            |
|      | 0.0044           | 106          | 0.1097<br>0.1184 |                             | 1.9761           |                     | 27.0071            |
|      | 0.0048           | 100.5        | 0.1184           | 126.5                       | 2.1164<br>2.2662 |                     | 28.7397            |
| 87.5 | 0.0057           | 107.5        | 0.1277           |                             | 2.2002           | 147                 | 30.5790            |
| 88   | 0.0062           | 107.3        | 0.1377           |                             | 2.4262           | 147.5<br>148        | 32.5311<br>34.6029 |
|      | 0.0067           |              | 0.1601           |                             | 2.7794           | 148.5               | 36.8011            |
|      | 0.0073           | 109          |                  |                             | 2.9741           |                     | 39.1333            |
| 89.5 | 0.0079           |              | 0.1860           |                             | 3.1820           |                     | 41.6072            |
|      |                  |              |                  | 20-1-10 120.00 125 WH 12-12 |                  | 1900 ALE DE 10 1000 |                    |

Tabla 3
Valores de tiempo de muerte térmica τ= F,min para el BIMO en dependencia de la temperatura t, °C (f = 1,43).

| t,°C | $F=\tau$ , min | t,°C | $F=\tau$ , min | t,°C $F=\tau$ , min | t,°C | $F=\tau$ , min. |
|------|----------------|------|----------------|---------------------|------|-----------------|
| 70   | 61999          | 90   | 1907.5         | 110 84.412          | 130  | 5.0896          |
| 71   | 51596          | 91   | 1619.0         | 111 72.845          | 131  | 4.4552          |
| 72   | 42984          | 92   | 1375.3         | 112 62.912          | 132  | 3.9024          |
| 73   | 35848          | 93   | 1169.3         | 113 54.374          | 133  | 3.4204          |
| 74   | 29927          | 94   | 995.1          | 114 47.030          | 134  | 3.0000          |
| 75   | 25011          | 95   | 847.5          | 115 40.709          | 135  | 2.6329          |
| 76   | 20923          | 96   | 722.5          | 116 35.263          | 136  | 2.3122          |
| 77   | 17522          | 97   | 616.5          | 117 30.569          | 137  | 2.0318          |
| 78   | 14688          | 98   | 526.4          | 118 26.518          | 138  | 1.7866          |
| 79   | 12325          | 99   | 449.9          | 119 23.021          | 139  | 1.5719          |
| 80   | 10352          | 100  | 384.9          | 120 20.000          | 140  | 1.3839          |
| 81   | 8703.7         | 101  | 329.5          | 121 17.388          | 141  | 1.2191          |
| 82   | 7325.0         | 102  | 282.3          | 122 15.127          | 142  | 1.0746          |
| 83   | 6170.6         | 103  | 242.1          | 123 13.170          | 143  | 0.9478          |
| 84   | 5203.2         | 104  | 207.8          | 124 11.474          | 144  | 0.8365          |
| 85   | 4391.6         | 105  | 178.4          | 125 10.003          | 145  | 0.7387          |
| 86   | 3710.1         | 106  | 153.4          | 126 8.727           | 146  | 0.6527          |
| 87   | 3137.3         | 107  | 132.0          | 127 7.618           | 147  | 0.5771          |
| 88   | 2655.4         | 108  | 113.6          | 128 6.655           | 148  | 0.5105          |
| 89   | 2249.6         | 109  | 97.9           | 129 5.818           | 149  | 0.4518          |

El valor B se halla mediante la ec.(6) y los datos (9), y el Criterio H<sub>R</sub> de Hiperriesgo según (27). Para f= 1,43 y t= 121,1°C se calcula el valor de τ por interpolación y los coeficientes D por la ec.(29) para cada uno de los dos valores de n. Para el BIMO y f= 1,3 se usa el valor D obtenido para n= 6 y  $t= 121,1^{\circ}$ C, con el cual se recalculan los valores de  $\tau$ para cada nivel de n. Las temperaturas isovalentes se obtienen por la ec.(10) y la temperatura crítica T<sub>Cr</sub> según(11). Los rangos de riesgo para el IMO son las temperaturas inferiores a 121,1°C y las superiores a 136,5°C (fig.1). Se destaca la ocurrencia de Hiperrangos de riesgo ( $H \ge 0$ ) e Hiperriesgo ( $H_R = \infty$ ) para la t<sub>M</sub>= 121,1°C común en las industrias biotecnológicas, lo cual implica un riesgo adicional: al trabajar con los valores Z de termorresistencia (IMO), todos los regímenes de esterilización que se efectúen hasta t= 121,1°C quedarán insuficientemente tratados aún cuando formalmente aparezcan como cumplidos los valores F requeridos (ec.(29)). Los SHPA alimentarios se esterilizan bajo un concepto de grado n= 5 para el microorganismo termorresistente. Los valores D (tabla 1) disminuyen, si se considera n= 6 y f= 1,43. En este último caso  $D_{121,1}^{BIMO} = 2,00 \text{ min} = D_{121,1}^{Stearotherm}$ . Además, el valor  $F_{121,1}^{9500}$ =  $\tau_{121,1}$ = 15,6 min para f= 1,3. Este valor cae en el intervalo de trabajo 11≤ F<sub>121,1</sub>≤ 16min (Flaumenbaum, 1981)

aceptado para SHPA alimentarios y coincide con el valor recomendado por la Pharmacopeia (USP XXII,1990) para los productos médico-farmacéuticos.

Para f= 1,43 el valor F<sub>T</sub><sup>B</sup>= 17,2> min F<sub>121,1</sub>= 16 min, lo que indica una coincidencia adecuada y que el papel determinante lo tendrá el valor del factor f que se adopte. El coeficiente B de termosensibilidad es menor que para el Cl. Botulinum (B= 14200 K) y también que para el Bac. Stearothem ophilus (B= 13300 K) (De la Cruz, 1990)<sup>1</sup>. Este hecho representa que el BIMO es en principio más termorresistente que ellos.

En la tabla 2 se dan los valores  $K_B$  del BIMO (ec.(4)). Estos valores permiten el cálculo real del  $L_T^B$ -efecto de esterilización a partir de cualesquiera perfiles tiempotemperatura según el método de la Concepción B basado en la ecuación de Arrhenius (De la Cruz, 1994)

$$L_0 = L_T^B = \int_0^t K_B d\tau \approx \Delta \tau \sum_{i=1}^n (K_B)_i$$
, min (30)

donde  $\Delta \tau$ - tiempo constante, igual entre lectura y lectura de la temperatura, min;  $L_T^B$ - efecto letal real, min. La esterilización será completa si  $L_T^B \ge F_T^B$  para

<sup>1</sup>-De la Cruz, (1990). Importancia práctica de los nuevos parámetros corregidos de trabajo para el *Cl.botulinum* tipo A y *B. stereothermophilus* según conceptos de la concepción B para la esterilización en: Conferencia Internacional de Arquitectura e Ingeniería de los alimentos. C. Habana, Cuba. Resultados no editados.

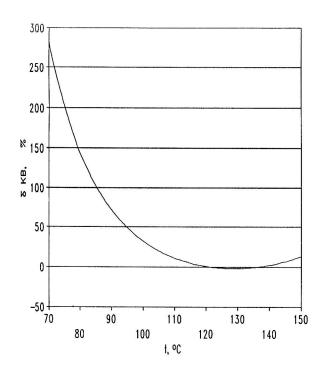



Fig.1. Dependencia de la diferencia relativa  $\delta K_B$ ,% de la temperatura  $t^o C$  e Hiperrangos de riesgo para el BIMO.

los mismos temperatura  $T_r$  de referencia y coeficiente B de termosensibilidad del microorganismo tomado como patrón. Por analogía con el IMO, en las tablas 3, 4, 5 y 6 se exponen respectivamente los valores F del BIMO y de velocidad letal  $L_i$ , min<sup>-1</sup>

$$L_i = \tau_i^{-1};$$
 (31)

donde: τ<sub>i</sub>- tiempo de muerte térmica para cada temperatura constante t<sub>i</sub>, min; para diferentes factores de seguridad en función de la temperatura. Las mismas permiten aplicar el método general de Ball como sigue.

$$L = \sum_{i=1}^{n} \left[ L_i(\Delta \tau)_i \right] \quad (32)$$

donde L- letalidad. La esterilización será completa si  $L \ge 1$ . Este método es más inexacto que el anterior (ec(.30)) y se abandona.

Las tablas 3 y 4 permiten además calcular los valores de  $D_T$  del BIMO para cualquier otra temperatura que se adopte como referencia para el trabajo con el método de la Concepción B (ec.(30)). De la expresión(29) sigue que:  $D_T = F_T/(6.f)$  (33).

Para la nueva temperatura T,K de referencia, deberán recalcularse los valores de  $K_B$  según la igualdad (7) para  $B=9\,500$  K.

Tabla 4
Valores de tiempo de muerte térmica τ= F,min para el BIMO en dependencia de la temperatura t,°C (f= 1,3).

| t,°C | $F=\tau$ , min | t,°C | $F=\tau$ , min | t,°C | $F=\tau$ , min | t,°C | $F=\tau$ , min. |
|------|----------------|------|----------------|------|----------------|------|-----------------|
| 70   | 56363          | 90   | 1734.1         | 110  | 76.738         | 130  | 4.6269          |
| 71   | 46906          | 91   | 1471.8         | 111  | 66.223         | 131  | 4.0501          |
| 72   | 39077          | 92   | 1250.3         | 112  | 57.192         | 132  | 3.5476          |
| 73   | 32589          | 93   | 1063.0         | 113  | 49.431         | 133  | 3.1095          |
| 74   | 27207          | 94   | 904.6          | 114  | 42.755         | 134  | 2.7272          |
| 75   | 22737          | 95   | 770.5          | 115  | 37.008         | 135  | 2.3935          |
| 76   | 19021          | 96   | 656.8          | 116  | 32.058         | 136  | 2.1020          |
| 77   | 15929          | 97   | 560.4          | 117  | 27.790         | 137  | 1.8471          |
| 78   | 13353          | 98   | 478.6          | 118  | 24.108         | 138  | 1.6241          |
| 79   | 11204          | 99   | 409.0          | 119  | 20.929         | 139  | 1.4290          |
| 80   | 9410.9         | 100  | 349.9          | 120  | 18.182         | 140  | 1.2581          |
| 81   | 7912.5         | 101  | 299.5          | 121  | 15.807         | 141  | 1.1083          |
| 82   | 6659.1         | 102  | 256.6          | 122  | 13.752         | 142  | 0.9769          |
| 83   | 5609.7         | 103  | 220.1          | 123  | 11.972         | 143  | 0.8617          |
| 84   | 4730.2         | 104  | 188.9          | 124  | 10.431         | 144  | 0.7605          |
| 85   | 3992.4         | 105  | 162.2          | 125  | 9.093          | 145  | 0.6715          |
| 86   | 3372.8         | 106  | 139.4          | 126  | 7.933          | 146  | 0.5934          |
| 87   | 2852.1         | 107  | 120.0          | 127  | 6.926          | 147  | 0.5246          |
| 88   | 2414.0         | 108  | 103.3          | 128  | 6.050          | 148  | 0.4641          |
| 89   | 2045.1         | 109  | 89.0           | 129  | 5.289          | 149  | 0.4108          |

Tabla 5 Valores de velocidad letal  $L_{i,min}^{-1}$  para el BIMO en dependencia de la temperatura t°C (f = 1,43).

| t,°C | L,min-1 | t,°C | L,min-1 | t,°C | L, min-1 | t,°C | L,min-1 |
|------|---------|------|---------|------|----------|------|---------|
| 70   | 1.6E-05 | 90   | 0.0005  | 110  | 0.0118   | 130  | 0.1965  |
| 71   | 1.9E-05 | 91   | 0.0006  | 111  | 0.0137   | 131  | 0.2245  |
| 72   | 2.3E-05 | 92   | 0.0007  | 112  | 0.0159   | 132  | 0.2563  |
| 73   | 2.8E-05 | 93   | 0.0009  | 113  | 0.0184   | 133  | 0.2924  |
| 74   | 3.3E-05 | 94   | 0.0010  | 114  | 0.0213   | 134  | 0.3333  |
| 75   | 4.0E-05 | 95   | 0.0012  | 115  | 0.0246   | 135  | 0.3798  |
| 76   | 4.8E-05 | 96   | 0.0014  | 116  | 0.0284   | 136  | 0.4325  |
| 77   | 5.7E-05 | 97   | 0.0016  | 117  | 0.0327   | 137  | 0.4922  |
| 78   | 6.8E-05 | 98   | 0.0019  | 118  | 0.0377   | 138  | 0.5597  |
| 79   | 8.1E-05 | 99   | 0.0022  | 119  | 0.0434   | 139  | 0.6362  |
| 80   | 9.7E-05 | 100  | 0.0026  | 1.20 | 0.0500   | 140  | 0.7226  |
| 81   | 0.0001  | 101  | 0.0030  | 121  | 0.0575   | 141  | 0.8203  |
| 82   | 0.0001  | 102  | 0.0035  | 122  | 0.0661   | 142  | 0.9306  |
| 83   | 0.0002  | 103  | 0.0041  | 123  | 0.0759   | 143  | 1.0550  |
| 84   | 0.0002  | 104  | 0.0048  | 124  | 0.0872   | 144  | 1.1955  |
| 85   | 0.0002  | 105  | 0.0056  | 125  | 0.1000   | 145  | 1.3538  |
| 86   | 0.0003  | 106  | 0.0065  | 126  | 0.1146   | 146  | 1.5321  |
| 87   | 0.0003  | 107  | 0.0076  | 127  | 0.1313   | 147  | 1.7329  |
| 88   | 0.0004  | 108  | 0.0088  | 128  | 0.1503   | 148  | 1.9589  |
| 89   | 0.0004  | 109  | 0.0102  | 129  | 0.1719   | 149  | 2.2131  |

#### 2. Análisis práctico y aplicación

#### 2.1 Problemas prácticos

Al aplicar cualquier régimen de esterilización debe tenerse en cuenta lo siguiente:

- 1.) No es posible lograr esterilidad absoluta o total.
- 2.) No es posible efectuar procesos de esterilización 100% seguros. La contaminación final es siempre un valor probabilístico, pero real.
- 3.) No es posible establecer al Bac. Stearotherm ophilus como patrón universal. Este microorganismo ha constituido un patrón de referencia suficientemente aceptable en la práctica actual para los SHPA.
- 4.) No se deben considerar los tratamientos 20 min a 120°C y 3 min a 134°C como absolutamente seguros. Ellos son tratamientos térmicos estadísticamente muy confiables.
- 5.) No se debe ignorar absolutamente la contaminación inicial de microorganismos.
- 6.) No se debe considerar seguro el concepto IMO. El mismo presenta el fenómeno de Hiperriesgo, por lo que resulta poco exacto, poco confiable y aumenta significativamente el peligro de esterilización insuficiente.

#### 2.2 Convenciones prácticas asumidas

Al establecer, modificar, perfeccionar o diseñar regímenes de esterilización se admitirán las siguientes convenciones.

#### I- Método de trabajo

Se acepta el método de la Concepción B para la esterilización (De la Cruz et al, 1987a, 1994).

# II- Microorganismo de referencia (patrón)

Se acepta el BIMO.

## III- Contaminación final

Se acepta estadísticamente (Van Asten y Dorpema, 1982) un valor final N= 10<sup>-6</sup> microorganismos por artículo, lo que equivale a una afectación residual o pérdidas esperadas S= 0,0001%.

# IV- Contaminación inicial

Caso 1: No se realizan determinaciones previas.: Se acepta en base a la práctica una carga biológica termorresistente inicial  $N_0$ = 1 por artículo (Tánchev, 1981; Flaumenbaum, 1981; Van Asten y Dorpema, 1982).

Caso 2: Se realizan determinaciones previas.

- 2.1- No se clasifica ni identifica la microbiota. Se determinará el número  $N_0$  inicial total de termorresistentes por artículo.
- 2.2- Se clasifica y/o identifica suficientemente. Se determinará el número inicial  $N_0$  del microorganismo más termorresistente del proceso.

#### V- Factor f de sobrediseño

Se asume un factor f= 1,43. Se propone su disminución a f= 1,3: se verificará su efectividad concreta.

Tabla 6 Valores de velocidad letal  $L_{i}$ , min<sup>-1</sup> para el BIMO en dependencia de la temperatura t<sup>o</sup>C (f = 1,3).

| t,°C | L, min-1 | t,°C | L, min-1 | t,°C ] | L,min <sup>-1</sup> | t,°C | L, min-1 |
|------|----------|------|----------|--------|---------------------|------|----------|
| 70   | 1.8E-05  | 90   | 0.0006   | 110    | 0.0130              | 130  | 0.2161   |
| 71   |          | 91   | 0.0007   | 111    | 0.0151              | 131  | 0.2469   |
| 72   | 2.6E-05  | 92   | 0.0008   | 112    | 0.0175              | 132  | 0.2819   |
| 73   | 3.1E-05  | 93   | 0.0009   | 113    | 0.0202              | 133  |          |
| 74   | 3.7E-05  | 94   | 0.0011   | 114    | 0.0234              | 134  | 0.3667   |
| 75   | 4.4E-05  | 95   | 0.0013   | 115    | 0.0270              | 135  |          |
| 76   | 5.3E-05  | 96   | 0.0015   | 116    | 0.0312              | 136  |          |
| 77   | 6.3E-05  | 97   | 0.0018   | 117    | 0.0360              | 137  |          |
| 78   | 7.5E-05  | 98   | 0.0021   | 118    | 0.0415              | 138  |          |
| 79   | 8.9E-05  | 99   | 0.0024   | 119    | 0.0478              | 139  |          |
| 80   | 0.0001   | 100  | 0.0029   | 120    | 0.0550              | 140  |          |
| 81   | 0.0001   | 101  | 0.0033   | 121    | 0.0633              | 141  | 0.9023   |
| 82   | 0.0002   | 102  | 0.0039   | 122    | 0.0727              | 142  |          |
| 83   | 0.0002   | 103  | 0.0045   | 123    | 0.0835              | 143  |          |
| 84   | 0.0002   | 104  | 0.0053   | 124    | 0.0959              | 144  | 1.3150   |
| 85   | 0.0003   | 105  | 0.0062   | 125    | 0.1100              | 145  | 1.4891   |
| 86   | 0.0003   | 106  | 0.0072   | 126    | 0.1261              | 146  |          |
| 87   | 0.0004   | 107  | 0.0083   | 127    | 0.1444              | 147  |          |
| 88   | 0.0004   | 108  | 0.0097   | 128    | 0.1653              | 148  |          |
| 89   | 0.0005   | 109  | 0.0112   | 129    | 0.1891              | 149  | 2.4344   |

# VI- Grado n de esterilización

Caso 1: No se realizan determinaciones previas. n=6. Caso 2: Se realizan determinaciones previas.  $n=\log(N_0/N)$ .

VII- Efecto F<sub>T</sub><sup>B</sup> necesario de esterilización

# Caso 1: No se realizan determinaciones previas $F_{-} = F_{-}^{B} = 17.2 \text{ min a } t = 121.19 \text{C m otros para$

 $F_0 = F_T^B = 17.2 \text{ min a } t_r = 121.1^{\circ}\text{C u otros pares}$  equivalentes (ec.(7)) según tablas 3 ó 4.

Caso 2: Se realizan determinaciones previas.  $F_T^B = f.n.D_T$ 

- 2.1- No se clasifica ni identifica la microbiota. Se toma de la tabla 1,  $D_T$ = 2,00 min a  $t_r$ = 121,1°C.
- 2.2- Se clasifica y/o identifica la microbiota. Se determina experimentalmente el  $D_T$  del microorganismo más termorresistente (teoría general del  $F_0$ ).

# VIII- Efecto L<sub>T</sub><sup>B</sup> letal de esterilización

En la tabla 2 se dan los valores  $K_B$  del BIMO para  $t_r$ = 121,1°C, para el cálculo del efecto letal real  $L_0$ , el cual se determinará en el rango no inferior a 100°C. El valor B se tomará de la siguiente manera.

Caso 1: No se realizan determinaciones previas. B= 9 500 K (BIMO).

Caso 2: Se realizan determinaciones previas.

2.1- No se clasifica ni identifica la microbiota. B= 9 500 K (BIMO).

2.2- Se clasifica y/o identifica la microbiota. Se determina el valor B experimentalmente para el microorganismo más termorresistente (método de la Concepción B).

# 2.3 Consideraciones generales

- 1.) Todo proceso de esterilización que se diseñe deberá validarse experimentalmente antes de su introducción definitiva, para prevenir cualquier aumento de termorresistencia por influencia del medio.
- 2.) Los procesos de esterilización pueden perfeccionarse para valores iguales del efecto F, aumentando la temperatura y disminuyendo correspondientemente el tiempo de trata miento (tablas 3, 4), de tal forma que disminuya la destrucción térmica de los preparados o sustancias termolábiles presentes. Pueden encontrarse excepciones.
- 3.) Todo proceso que se diseñe debe tomar en cuenta las restricciones tecnológicas que impone el equipamiento utilizado.
- 4.) No es imprescindible la clasificación y/o identificación de la contaminación inicial. Se recomienda, siempre que sea posible, determinar el número  $N_0$  inicial total de microorganismos termorresistentes presentes por artículo. Este valor se tomará analizando un número suficiente de muestras.

## 2.4 Aplicabilidad

La utilización del BIMO mantiene la posibilidad de pasar del monitoreo al control del proceso. Puede obviarse la clasificación y/o identificación de los micro oganismos iniciales contaminantes. Esta posibilidad permite su empleo por muchas entidades, sin necesidad de laboratorios sofisticados.

En aquellos lugares cuyo equipamiento, tiempo, recursos y calificación del personal se lo permite, podría justificarse la clasificación e identificación de la carga inicial contaminante, si esta es endémica. Se determinarán los parámetos D, B y  $N_0$  del microorganismo más termorresistente. El valor total  $F_T^B$  necesario se deberá alcanzar al finalizar las etapas de calentamiento. Así, la fase de enfriamiento quedará como margen adicional de seguridad. Cuando el proceso productivo está bién controlado, la higiene está a buen nivel y la microbiota es suficientemente estable, no es necesario este margen y el valor total  $F_T^B$  puede ser alcanzado durante el enfriamiento.

Al introducirse el BIMO en la práctica puede estarse en uno de los siguientes casos.

**Caso 1:** No existe necesidad aparente de perfeccionar el proceso. Los valores  $B=9500 \text{ K y D}_{121,1}=2,00 \text{ min}$  se toman en concordancia con la tabla 1. No se determina  $N_0$  y se acepta n=6 y f=1,43 (tabla 3). Se hacen pruebas para emplear f=1,3 (tabla 4).

Caso 2: Se realiza conteo inicial de termorresistentes. El número  $N_0$  inicial se emplea como guía. Se recalculan n y  $F_T{}^B$ .

Caso 3: Se puede llegar a conocer la microbiota inicial y sus parámetros característicos. Los cálculos se realizan con los parámetros D, B y N<sub>0</sub> reales del microorganismo más termorresistente presente. Este caso es muy específico y su estabilidad en el tiempo poco probable, por lo que habrá que comprobarlo minuciosamente.

#### CONCLUSIONES

El IMO presenta el fenómeno de los Hiperrangos de riesgo e Hiperriesgo, por lo que resulta insuficientemente exacto y poco confiable. El empleo del valor Z no permite una correcta extrapolación de los cálculos.

Al introducir el BIMO (B= 9 500 K, D<sub>121,1</sub>= 2,00 min) se eliminan estos problemas, por lo que los resultados son más seguros y exactos y se mejora la extrapolabilidad.

Se introduce el trabajo con el método de la Concepción B para la determinación del efecto F de esterilización, por lo que se perfecciona el método de cálculo con respecto al IMO.

Se introducen los nuevos coeficientes  $K_B$  de velocidad letal para el BIMO y los Criterios de Hiperrangos de riesgo e Hiperriesgo.

Se considera trabajar con un factor f= 1,3 de sobrediseño inferior al 43% (f= 1,43) adicional actualmente empleado en la práctica.

Se prevén pasos a considerar en diferentes casos que se presentan en y/o durante la introducción del BIMO. Esta técnica BIMO permite perfeccionar diferentes procesos de esterilización y mejorar la seguridad de los mismos.

#### REFERENCIAS

- AIBA S., A.E. HUMPREY y N.F. MILLIS (1973). Biochemical engineering. Academic Press, New York.
- DEINDOERFER F.H. (1957). Calculations of heat sterilization times for fermentation media. Appl. Microbiol.5: No 4, 224-229.
- DE LA CRUZ FIGUEROA L.F., S. TÁNCHEV, K.VÍDEV, S. AKTERIAN (1987a). B-kontseptsija za izchizliavane na F-efekta pri sterilizatsija chrez zavicimostta na Arrhenius. Hranitelnopromishlena nauka 3: N<sub>0</sub>3, 59-66.
- DE LA CRUZ FIGUEROA L.F., S. AKTERIAN, K.VÍDEV, S. TANCHEV (1987b). Izledvane na izchizlenite chrez Z-stóinosti y B-stóinosti otklonenija na F-efekta pri sterilizatsija. *Hranitelnopromishlena naŭka* 3: NO.4, 68-78.
- DE LA CRUZ FIGUEROA L.F. (1994). Cálculo del efecto F de esterilización según la nueva Concepción B aplicado a microbiota termorresistente. Revista Biología UH.8: 2, en prensa.
- FLAUMENBAUM B.L.(1981). Teoreticheskije osnovi sterilizatsii konservov. Izd. Kiev, Kiev.
- LENZ M.K., D.B. LUND(1977). The lethality-fourier number method: experimental verification of a model for calculating temperature profiles and lethality in conduction heating canned foods. *J. of Food Science* 42: N0.4, 989-996.
- MATVEJEV B.E. (1981). Osnovi aseptiki v tehnologii chistih microbiologicheski preparatov. Izd. Moskva, Moskva.
- STUMBO C.R.(1973). Thermobacteriology in food processing. 2nd. Ed., Academic Press. N.Y. and London.
- TÁNCHEV S.(1981). Tehnologija na konserviraneto na plodove i zelenchutsi. Izd. G.Dánov. Plóvdiv.
- THIJSSEN H.A.C., J.A.A. KERKHOFF, A.A.A. LIEFKENS(1976). Short-cut method for the calculation of sterilization yielding optimum quality retention for conduction type heating of packaged foods. J. of Food Science 43: 1976-1986.
- U.S.Pharmacopeia XXII, 1990. Washington, D.C.
- VAN ASTEN J., J.W. DORPEMA(1982). A new approach to sterilization conditions. The IMO concept. *Pharmaceutisch Weekblad Scientific Edition* 4: 49-56.
- WANG D.I.C., C.L. COONEY, A.L. DEMAIN, P. DUNNIL, A.C. HUMPHREY (1979). Fermentation and enzyme technology. John Wiley, N.Y.